CSSE 220 Day 14

Designing Classes

Check out the Static project from SVN



Questions







Good Classes Typically

» Come from nouns in the problem description

» May...
- Represent single concepts
- Circle, Investment
Represent visual elements of the project
- FacesComponent, UpdateButton
Be abstractions of real-life entities
- BankAccount, TicTacToeBoard
Be actors
- Scanner, CircleViewer
Be utilities

- Math

O

O

(0]

0]

Ql



What Stinks? Bad Class Smells

» Can’t tell what it does from its name
- PayCheckProgram

» Turning a single action into a class
- ComputePaycheck

» Name isn’t a noun
- Interpolate, Spend

Q2



Analyzing Quality of Class Design

» Cohesion

» Coupling

.



Cohesion

» A class should represent a single concept

» Public methods and constants should be
cohesive

» Which is more cohesive?

CashRegister CashRegister

double NICKEL_VALUE void add(ArrayList<Coin> coins)
double DIME_VALUE
double QUARTER_VALUE

void add(int nickels, int :
dimes, int quarters) Coin

double getValue()




Dependency Relationship

» When one class requires another class to do
its job, the first class depends on the second

» Shown on UML CashRegister

diagrams as: void add(ArrayList<Coin> coins)
- dashed line

> with open arrowhead

Coin

. double getValue() Q4-6




Coupling

» Lots of dependencies == high coupling
» Few dependencies == low coupling

l*-l i
- i L

.ﬁ

» Which is better? Why?

.

Q7



Quality Class Designs

» High cohesion

» Low coupling

.



Accessors and Mutators Review

» Accessor method: accesses information
without changing any

» Mutator method: modifies the object on
which it is invoked

Q8




Immutable Classes

» Accessor methods are very predictable
- Easy to reason about!

» Immutable classes:
- Have only accessor methods
- No mutators

» Examples: String, Double

» Is Rectangle immutable?




Immutable Class Benefits

» Easier to reason about, less to go wrong

» Can pass around instances “fearlessly”

Q9



Side Effects

» Side effect: any modification of data

» Method side effect: any modification of data
visible outside the method

- Mutator methods: side effect on implicit parameter
- Can also have side effects on other parameters:
- public void transfer(double amt, Account other)

{

this.balance -= amt;
other.balance += amt;

Avoid this if you can! Q10




Quality Class Designs

High cohesion
» Low coupling
Class names are nouns; Method names are verbs

Immutable where practical
- Document where not
Inheritance for code reuse

Interfaces to allow others to interact with your
code

v

v

v

v

v







Object-Oriented Design

» We won’t use full-scale, formal
methodologies
- Those are in later SE courses

» We will practice a common object-oriented
design technique using CRC Cards

» Like any design technique,
the key to success is practice




Key Steps in Our Design Process

1. Discover Classes based on
requirements

2. Determine Responsibilities of
each class

3. Describe Relationships between

classes
& Qi



Discover Classes
Based on Requirements

» Brainstorm a list of possible classes
- Anything that might work

oro SquaShing
Tired of hearing this yet?
4 PI‘OIIIptSZ /

> Look for nouns

- Multiple objects are often created from each class
- so look for plural concepts

> Consider how much detail a concept requires:
- A lot? Probably a class
- Not much? Perhaps a primitive type

» Don’t expect to find them all 2 add as needed




Determine Responsibilities

» Look for verbs in the requirements to identify
responsibilities of your system

» Which class handles the responsibility?

» Can use CRC Cards to discover this:
- Classes
- Responsibilities
- Collaborators




CRC Cards

» Use one index card per class

/ Class name

MailBox
list messages

Responsibilities Collaborators




CRC Card Technique

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
- Add that responsibility to the class’s card

3. Can that class carry out the responsibility by

itself?
> Yes > Return to step 1

o No =
- Decide which classes should help
List them as collaborators on the first card

Add additional responsibilities to the collaborators’
cards




CRC Card Tips

» Spread the cards out on a table
> Or sticky notes on a whiteboard instead of cards
» Use a “token” to keep your place
- A quarter or a magnet
» Focus on high-level responsibilities
- Some say < 3 per card
» Keep it informal
- Rewrite cards if they get to sloppy

> Tear up mistakes
- Shuffle cards around to keep “friends” together




High cohesion

. Low coupling
Exa m p I e. C h ess Immutable where practical
Document where not
1. Pick a responsibility of the Inheritance for code reuse
program Interfaces to allow others
2. Pick a class to carry out to interact with your code

that responsibility
- Add that responsibility to the class’s card
3. Can that class carry out the responsibility by itself?

> Yes > Return to step 1
- No -
Decide which classes should help
List them as collaborators on the first card
Add additional responsibilities to the collaborators’ cards

Design a program that lets two people play chess

against each other.
* Assume a single, shared computer and input via the Console.




Describe the Relationships

» Classes usually are related to their

collaborators

» Each person draw a UML class diagram
showing how

» Common relationships:
> Inheritance: only when subclass is a special case

- Aggregation: when one class has a field that
references another class

- Dependency: like aggregation but transient, usually
for method parameters, “has a”’ temporarily

- Association: any other relationship, can label the

AL [ow, e.g., constructs

7 AR



Su mmary Of Exercise: Draw a UML class diagram based

on
U M L C I dSS * Show just classes (not insides of each).

N\ * For homework:
Iag ram AI‘I‘OWS * Draw using UMLet

* Add insides for two classes

. Interface
Inheritance Implementation Dependency
(is a) (is a) (depends on)
Message L‘?:tt-;::r Dimension
o & A
:f;ii:lﬁ:::‘: SendHandler MailFrame
Aggregation ..
g9reg Association
(has a)
:f::ci:ﬂ::r::‘: -::)L Attachment Main |—S@OSIFUCES ] MailFrame



../Homework/CRCCardsForChess.pdf







What is static Anyway?

» static members (fields and methods)...
- are not part of objects
- are part of the class itself

» Mnemonic: objects can be passed around, but
static members stay put




Static Methods

» Cannot refer to this
- They aren’t in an object, so there is no this!

» Are called without an implicit parameter
- Math.sqrt(2.0)

Class name, not object
reference

- Inside a class, the class name is optional but more clear to
use (just like this for instance fields and methods)




When to Declare Static Methods

» Helper methods that don’t refer to this
- Example: creating list of Coordinates for glider

» Utility methods like s/n and cos that are not
associated with any object

- Another example:

public class Geometry3D ({
public static double sphereVolume (double radius) ({

}
}

» The main () method is static

- Why is it static? What objects exist when the
program starts?

=
N\
R\
AN AN
X AN
\\ A\
:-" \ «’
OR \ A\

Q12



Static Fields

» We've seen static final fields

» Can also have static fields that aren’t final
> Should be private

- Used for information shared between instances of a
class

- Example: the number of times a foo() method of the
Blah class is called by ANY object of the Blah class

Q13



Two Ways to Initialize

» private static int nextAccountNumber = 100;

» or use “static initializer” blocks:

public class Hogwarts {
private static ArrayList<String> FOUNDERS;

static {
FOUNDERS = new ArrayList<String>(Q);
FOUNDERS . add("Godric Gryfindor');

// ...

Q14-15




Exercise

» Polygon
- Run the pr

- Note that t
is shown bu

- Read all the

- Do and test t
sides, asking g

- Do and test the T
sides

You might find Integer.MAX_




