
Designing Classes

Check out the Static project from SVN

It starts with good classes…

 Come from nouns in the problem description

 May…
◦ Represent single concepts

 Circle, Investment

◦ Represent visual elements of the project

 FacesComponent, UpdateButton

◦ Be abstractions of real-life entities

 BankAccount, TicTacToeBoard

◦ Be actors

 Scanner, CircleViewer

◦ Be utilities

 Math

Q1

 Can’t tell what it does from its name

◦ PayCheckProgram

 Turning a single action into a class

◦ ComputePaycheck

 Name isn’t a noun
◦ Interpolate, Spend

Q2

 Cohesion

 Coupling

 A class should represent a single concept

 Public methods and constants should be
cohesive

 Which is more cohesive?

CashRegister

double NICKEL_VALUE
double DIME_VALUE

double QUARTER_VALUE

void add(int nickels, int
dimes, int quarters)

…

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q3

 When one class requires another class to do
its job, the first class depends on the second

 Shown on UML
diagrams as:
◦ dashed line

◦ with open arrowhead

CashRegister

void add(ArrayList<Coin> coins)
…

Coin

double getValue()
Q4-6

 Lots of dependencies == high coupling

 Few dependencies == low coupling

 Which is better? Why?

Q7

 High cohesion

 Low coupling

 Accessor method: accesses information
without changing any

 Mutator method: modifies the object on
which it is invoked

Q8

 Accessor methods are very predictable
◦ Easy to reason about!

 Immutable classes:
◦ Have only accessor methods

◦ No mutators

 Examples: String, Double

 Is Rectangle immutable?

 Easier to reason about, less to go wrong

 Can pass around instances “fearlessly”

Q9

 Side effect: any modification of data

 Method side effect: any modification of data
visible outside the method
◦ Mutator methods: side effect on implicit parameter

◦ Can also have side effects on other parameters:

 public void transfer(double amt, Account other)

{

this.balance -= amt;

other.balance += amt;

}

Avoid this if you can! Q10

 High cohesion

 Low coupling

 Class names are nouns; Method names are verbs

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others to interact with your
code

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards

 Like any design technique,
the key to success is practice

1. Discover Classes based on
requirements

2. Determine Responsibilities of
each class

3. Describe Relationships between
classes

Q11

 Brainstorm a list of possible classes
◦ Anything that might work

◦ No squashing

 Prompts:
◦ Look for nouns

◦ Multiple objects are often created from each class
 so look for plural concepts

◦ Consider how much detail a concept requires:

 A lot? Probably a class

 Not much? Perhaps a primitive type

 Don’t expect to find them all  add as needed

Tired of hearing this yet?

 Look for verbs in the requirements to identify
responsibilities of your system

 Which class handles the responsibility?

 Can use CRC Cards to discover this:

◦ Classes

◦ Responsibilities

◦ Collaborators

 Use one index card per class

Class name

CollaboratorsResponsibilities

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

◦ Yes  Return to step 1

◦ No 

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’
cards

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get to sloppy

◦ Tear up mistakes

◦ Shuffle cards around to keep “friends” together

1. Pick a responsibility of the
program

2. Pick a class to carry out
that responsibility

◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by itself?
◦ Yes  Return to step 1

◦ No 

 Decide which classes should help

 List them as collaborators on the first card

 Add additional responsibilities to the collaborators’ cards

Design a program that lets two people play chess

against each other.

• Assume a single, shared computer and input via the Console.

 High cohesion

 Low coupling

 Immutable where practical

◦ Document where not

 Inheritance for code reuse

 Interfaces to allow others
to interact with your code

 Classes usually are related to their
collaborators

 Each person draw a UML class diagram
showing how

 Common relationships:
◦ Inheritance: only when subclass is a special case

◦ Aggregation: when one class has a field that
references another class

◦ Dependency: like aggregation but transient, usually
for method parameters, “has a” temporarily

◦ Association: any other relationship, can label the
arrow, e.g., constructs

Exercise: Draw a UML class diagram based

on our CRC cards

• Show just classes (not insides of each).

• For homework:

• Draw using UMLet

• Add insides for two classes

../Homework/CRCCardsForChess.pdf

Very brief demo of UMLet.
Show how to:

• Create a diagram element

• Type data for that element

 static members (fields and methods)…
◦ are not part of objects

◦ are part of the class itself

 Mnemonic: objects can be passed around, but
static members stay put

 Cannot refer to this
◦ They aren’t in an object, so there is no this!

 Are called without an implicit parameter

◦ Math.sqrt(2.0)

◦ Inside a class, the class name is optional but more clear to
use (just like this for instance fields and methods)

Class name, not object
reference

 Helper methods that don’t refer to this
◦ Example: creating list of Coordinates for glider

 Utility methods like sin and cos that are not
associated with any object
◦ Another example:
public class Geometry3D {

public static double sphereVolume(double radius) {

...

}

}

 The main() method is static
◦ Why is it static? What objects exist when the

program starts?

Q12

 We’ve seen static final fields

 Can also have static fields that aren’t final
◦ Should be private

◦ Used for information shared between instances of a
class

 Example: the number of times a foo() method of the
Blah class is called by ANY object of the Blah class

Q13

 private static int nextAccountNumber = 100;

 or use “static initializer” blocks:

public class Hogwarts {

private static ArrayList<String> FOUNDERS;

// …

}

static {

FOUNDERS = new ArrayList<String>();

FOUNDERS.add("Godric Gryfindor");

// ...

}

Q14-15

 Polygon

• Run the program

• Note that the least/most number of sides data
is shown but is -1 (not yet implemented)

• Read all the TODO’s in the Polygon class

• Do and test the TODO’s for most number of
sides, asking questions as needed

• Do and test the TODO’s for least number of
sides

• You might find Integer.MAX_VALUE helpful

